August 2022 Riddle Answer
Screwdriver = 3
Sun = 5
Ute = 7
Answer = 22
Screwdriver = 3
Sun = 5
Ute = 7
Answer = 22
Honey!
A motor is used to convert electrical energy into mechanical energy to power a range of processes from simple functions like powering a fan to industrial operations such as pumps, conveyors or agitators.
Motors differ according to their power type (AC or DC) and their method of generating rotation. AC motors are used to drive complex and more fragile equipment, whereas DC motors usually power heavier equipment that needs easier maintenance and operation controls. AC motors can also provide higher levels of torque, which means they are often considered more powerful than DC motors.
There are various types of both AC and DC motors.
Brushed DC motors
Brushed DC motors have a simple design and are easy to control. While they are used in a range of consumer goods such as small appliances, they can also be suitable for industrial applications where high torque is required. For example, dispensing equipment used in the medical and packaging fields.
The disadvantage of brushed DC motors is that the brushes and commutators tend to wear relatively quickly. Their continuous contact means they require frequent replacement and periodic maintenance.
Brushless DC Motors:
As the name suggests, Brushless DC Motors (BLDC) do not use brushes. Instead, the rotor is a permanent magnet. The coils do not rotate but are instead fixed in place on the stator. Because the coils do not move there is no need for brushes and a commutator.
The permanent magnet rotates by changing the direction of the magnetic fields generated by the surrounding stationary coils. To control the rotation, you adjust the magnitude and direction of the current into these coils.
Brushless DC Motors are used in industrial applications where precise motion control and stable control are critical. These include:
Stepper Motors:
Stepper motors are driven by pulses. They rotate through a specific angle or step with each pulse. Because the rotation is precisely controlled by the number of pulses received, these motors are widely used to implement positional adjustments.
Examples of the types of industrial applications they may be used for include:
Induction Motors:
An induction motor is an AC electric motor. The electric current in the rotor needed to produce torque is obtained via electromagnetic induction from the rotating magnetic field of the stator winding.
Induction motors are the most frequently used type of motor. They are used in residential, commercial, and industrial settings, with over 80% of all motors being induction motors.
Induction motors are also known as Asynchronous Motors. This is because an induction motor always runs at a slower speed than synchronous speed. The speed of the rotating magnetic field in the stator is called synchronous speed.
There are two main types of AC induction motor: single-phase and three-phase.
Single-phase induction motors are used extensively for smaller loads, such as household appliances like fans. While these motors have traditionally been used in fixed-speed applications, they are increasingly being used with variable-frequency drives (VFD).
Single-phase Induction Motors are used for:
Industrial applications generally require three-phase motors. A three-phase AC motor has three main stator windings and operates on three-phase AC power. Three-phase motors are self-starting and can produce a large initial torque. AC induction motors for industrial applications range in size from 1 to 100,000 hp.
Most three-phase motors have squirrel cage rotors, but they can also have wound rotors. Squirrel cage motors are more widely used as they have a simple design and rugged construction. This rugged construction means they require little maintenance which makes them a popular choice for domestic and industrial appliances.
Three Phase Induction Motor are used for:
Synchronous Motors:
In synchronous AC motors the rotor rotates in sync with the excitation field. The magnetisation of the rotor is produced by a permanent magnet in brushless designs or by windings with an AC current supplied through slip rings or brushes.
These motors maintain a constant speed at all loads. When the load exceeds the rated load, the motor ‘pulls out’ of synchronism and will stop operating. Synchronous motors are suitable for precision drives where accurate speed control is required.
The advantages of the synchronous motor are the ease with which the power factor can be controlled and the constant rotational speed of the machine, irrespective of the applied load.
Synchronous motors are used in:
There are many aspects to consider when selecting an industrial motor. These include:
Other considerations also include
Selecting, installing, and maintaining the right motors in your company’s facilities and equipment is an essential step to ensuring uninterrupted operation and production.
Electrical & Automation Solutions (EAS) can provide you with advice on the right motor for your process as well as provide you with ongoing maintenance and service to ensure they continue to run in top notch condition – get in touch today!
Electricity!
Industrial pumps are designed specifically for use in harsh or heavy-duty applications. They move a range of material types, including water, wastewater, chemicals, oil, sludges, slurries and food.
If correctly installed, they should operate for many years without issue. However as with any mechanical or electrical equipment, regular maintenance is the best defense against costly breakdowns.
Pumps should be checked and lubricated on a regular basis, and any unusual noises or equipment behaviour investigated.
Five key pump checks:
It can be a complex and time consuming process to figure out why your pump system isn’t working the way it should. Take the stress out of finding the issue by calling the experts at Electrical and Automation Solutions on 07 834 0505. We’ll help you get your system back to peak performance in no time.
Bundling wires and cables together is done to:
Cable ties are the tool used to keep cables and wires in a safe, organised and functional format that makes them easy to manage.
What to consider when selecting cable ties:
There are a wealth of different cable ties available in wide range of strengths, maximum diameters, length and widths, temperature ranges and different materials.
The environment in which the cable ties will be used should have a big impact on the cable ties selected. For example, in food and beverage manufacturing a key concern is product contamination. Cable Ties used in this environment must be easily detectable in case they inadvertently contaminate a production batch. Standard cable ties are not easy to detect which is why metal detectable cable ties are used in high risk areas
Other properties of different types of cable ties which can make them more easily detectable include:
Other factors that may affect the choice of cable ties used are the environment in which they are operating. For example, Polypropylene cable ties are chemical resistant while other cable ties are UV stablised making them more suited for outdoor use.
Wires and cables can require different cable ties based on their function too. Electrical wires work effectively when bundled together with cable ties, however data cables’ performance can be affected if cable ties are too tight,for this reason Velcro is often recommended for bundling data cables.
Cable ties are often thought of as an insignificant piece of equipment, low cost, unobtrusive; but as you can see choosing the correct one can have an impact on the quality of the job done in your plant.
You can trust the Electrical & Automation Solutions (EAS) team to have the knowledge and expertise to use the right equipment for the job – right down the smallest detail – ensuring a quality result for your plant or process.
Measuring devices are critical equipment in your process and plant. Correct measurements are essential in ensuring the quality of your product. Therefore, it is vital that these devices are regularly calibrated to ensure they are operating as they should.
Calibration involves checking the measures taken by a device and comparing these against a traceable reference to ensure they are accurate.
Why calibrate?
Even the best instruments drift over time. With key decisions often based on these instrument readings it is essential that you can be confident they are accurate.
How often should you calibrate your instruments?
Each instrument Is different. Key factors that will help decide the appropriate calibration interval include:
Device vs Loop Calibration
Device calibration focuses on one specific device. The device is calibrated at install to create a benchmark and is periodically checked for accuracy.
Individual Calibration:
Loop calibration involves looking at the performance of the entire loop and all its components including the sensor, transmitter, wiring, input card etc. These all work together to measure the process parameter.
Loop calibration:
The other key step in the calibration process is the documentation of the results. EAS provides calibration certificates for all work done ensuring that your paperwork is all up-to-date.
It is essential that calibrations are carried out by trained skilled professionals like the Electrical & Automation solutions (EAS) team. If you need an instrument calibrated or want to discuss setting up a calibration timetable, get in touch with the EAS team today on 07 834 0505.
safety in numbers
racecar